In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer.

نویسندگان

  • J D Istok
  • J M Senko
  • L R Krumholz
  • D Watson
  • M A Bogle
  • A Peacock
  • Y J Chang
  • D C White
چکیده

The potential to stimulate an indigenous microbial community to reduce a mixture of U(VI) and Tc(VII) in the presence of high (120 mM) initial NO3- co-contamination was evaluated in a shallow unconfined aquifer using a series of single-well, push-pull tests. In the absence of added electron donor, NO3-, Tc(VII), and U(VI) reduction was not detectable. However, in the presence of added ethanol, glucose, or acetate to serve as electron donor, rapid NO3- utilization was observed. The accumulation of NO2-, the absence of detectable NH4+ accumulation, and the production of N2O during in situ acetylene-block experiments suggest that NO3- was being consumed via denitrification. Tc(VII) reduction occurred concurrently with NO3- reduction, but U(VI) reduction was not observed until two or more donor additions resulted in iron-reducing conditions, as detected by the production of Fe(II). Reoxidation/remobilization of U(IV) was also observed in tests conducted with high (approximately 120 mM) but not low (approximately 1 mM) initial NO3- concentrations and not during acetylene-block experiments conducted with high initial NO3-. These results suggest that NO3(-)-dependent microbial U(IV) oxidation may inhibit or reverse U(VI) reduction and decrease the stability of U(IV) in this environment. Changes in viable biomass, community composition, metabolic status, and respiratory state of organisms harvested from down-well microbial samplers deployed during these tests were consistent with the conclusions that electron donor additions resulted in microbial growth, the creation of anaerobic conditions, and an increase in activity of metal-reducing organisms (e.g., Geobacter). The results demonstrate that it is possible to stimulate the simultaneous bioreduction of U(VI) and Tc(VII) mixtures commonly found with NO3- co-contamination at radioactive waste sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of supplemental organic carbon on long-term reduction and reoxidation of uranium

Bioreduction of mobile uranyl(VI) (UO2 ) to sparingly soluble uraninite (U(IV)O2(s)) is a strategy that has been proposed for in situ remediation of uranium contaminated aquifers. That strategy faces the challenge of reoxidation of uraninite, with consequent release of soluble uranyl when the stimulation of U(VI) bioreduction is terminated. We tested the effects of supplemental organic carbon (...

متن کامل

Bioreduction of uranium in a contaminated soil column.

The bioreduction of soluble uranium [U(VI)] to sparingly soluble U(IV) species is an attractive remedial technology for contaminated soil and groundwater due to the potential for immobilizing uranium and impeding its migration in subsurface environments. This manuscript describes a column study designed to simulate a three-step strategy proposed for the remediation of a heavily contaminated sit...

متن کامل

Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate in contaminated subsurface sediments by using stable isotope probing.

Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [¹³C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betapro...

متن کامل

Oxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle, CO.

Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO₂), a desirable U(VI) bioreduction product, in the Old Rif...

متن کامل

Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments.

Microbiological reduction of soluble U(VI) to insoluble U(IV) has been proposed as a remediation strategy for uranium-contaminated groundwater. Nitrate is a common co-contaminant with uranium. Nitrate inhibited U(VI) reduction in acetate-amended aquifer sediments collected from a uranium-contaminated site in New Mexico. Once nitrate was depleted, both U(VI) and Fe(III) were reduced concurrently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 2004